THE IMPACT OF ANTIMICROBIAL STEWARDSHIP AND ACCURATE SUSCEPTIBILITY RESULTS ON PATIENTS WITH SEPSIS

Nathan A Ledeboer Professor of Pathology and

Chief, Division of Clinical Pathology

Department of Pathology and Laboratory Medicine

Medical College of Wisconsin

Associate Chief Medical Laboratory Officer Froedtert Health

Milwaukee, WI

Difficult to Treat MDRO

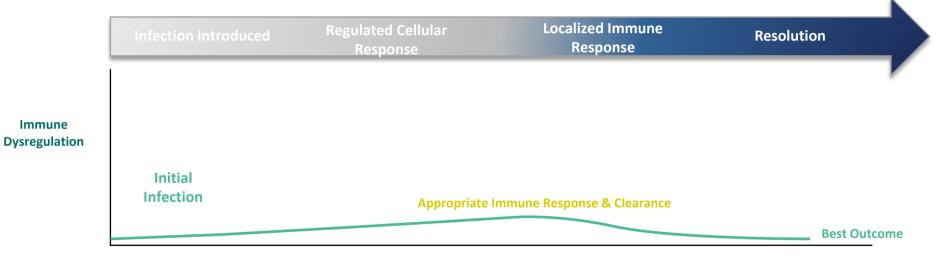
- 30-year-old male, no significant previous medical history
- Sustained friction burns following flash diesel explosion at industrial plant
- 65% total body surface area burn wounds
- Admitted to the burn unit
- Multiple operations and allografts
- 2 weeks after admission:
 - K. pneumoniae in blood cultures

Molecular results (positive blood culture): *bla*_{NDM-5} carbapenemase gene detected

Antimicrobial	K. pneumoniae		
Amikacin	≤8	S	
Cefazolin	>16	R	
Cefepime	>16	R	
Cefiderocol	32	R	
Ceftazidime- avibactam	16	R	
Ceftriaxone	>32	R	
Ciprofloxacin	>2	R	
Ertapenem	>2	R	
Gentamicin	>8	R	
Levofloxacin	>4	R	
Meropenem	4	R	
Piperacillin- tazobactam	>64/4	R	
Tobramycin	>8	R	
Trimeth-	>2/38	R	

What is happening here? Laboratory Troubleshooting:

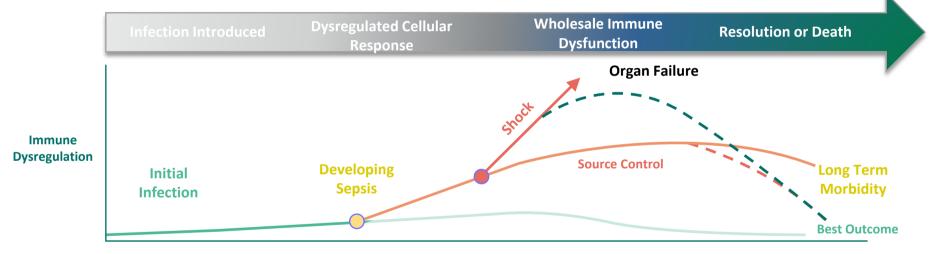
- Confirm there is no mixture
 - pure
- Confirm breakpoints are right
 - Up to date vs. CLSI M100 32nd Edition
- Confirm "R" mechanism testing and MICs
 - NDM-5 detected, same pattern
- Repeat MIC by alternative method
 - MICs confirmed
- Synergy testing with ceftazidime-avibactam and azetreonam was susceptible


What can we do?

- Synergy Testing
- Novel Agents
 - Cefepime-zidebactam
 - Cefepime-taniborbactam
 - Cefiderocol-xeruborbactam

3

Infection is not synonymous with Sepsis

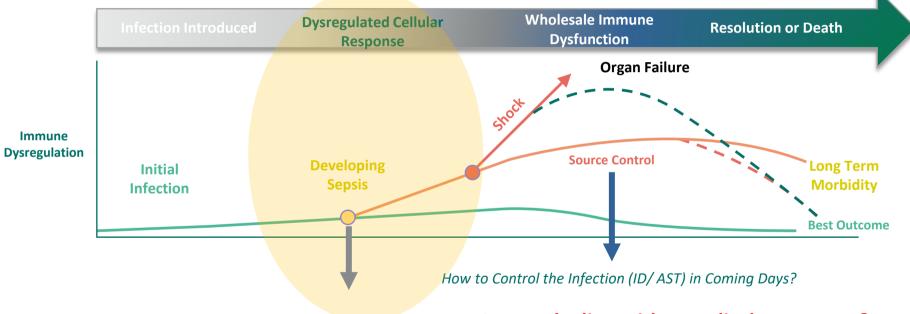

Medical College of Wisconsin CONFIDENTIAL. Do not share.

Sepsis Is A Dysregulated Immune Response To Infection¹

Sepsis is a syndrome and has most recently been defined as

life-threatening organ dysfunction to infection²

¹Graphic adapted from Prof. Mervyn Singer, ECCMID 2022


²Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287

Medical College of Wisconsin CONFIDENTIAL. Do not share.

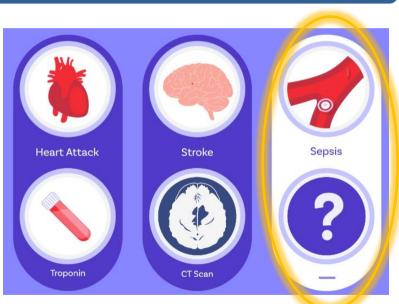
Sepsis Poses A Medical Emergency

This dysregulated immune response makes sepsis a medical emergency

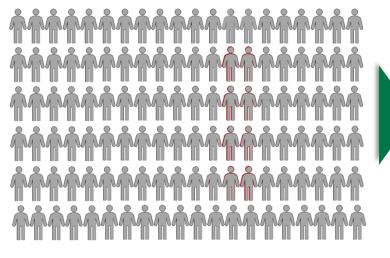
Medical College of Wisconsin CONFIDENTIAL. Do not share.

Sepsis Is A Medical Emergency That Needs Actionable Risk Stratification

Sepsis is the leading cause of death in hospitals worldwide


80% Of sepsis cases present to ED

2x Number of Stroke & Heart Attack cases


1 in 5 Of 150M+ ED patient visits are at risk of sepsis

Challenge of Potentially Infectious Patients in the ED

80% of Sepsis patients present to the ED

Sepsis patients are **masked** by a much larger cohort of suspected infection patients

ED Quandary

Limited Information (vitals, symptoms, CBC...)

Limited Time (<3hr to administer ABx per Sep-1 bundle)

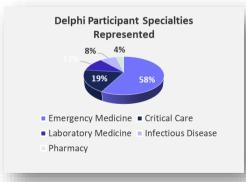
No-Win Situation for Emergency Departments

- Under diagnosis
 - Rapid clinical deterioration/risks of organ damage
 - Potential for readmission
 - Quality metrics -> reimbursement
- Over diagnosis
 - Increased costs/resource utilization
 - ED Throughput
 - Delayed/missed diagnosis
 - IV vs Oral Abx

THERE IS A NEED FOR BETTER MARKERS OF INFECTION STATUS

Medical College of Wisconsin CONFIDENTIAL. Do not share.

A Case Study Illustrating the Need


Study Objectives

- 1. Develop guiding statements around (1) use of a hypothetical Rapid Sepsis Test (performance characteristics mirror IntelliSep) and (2) direction on clinical use and incorporation into hospital workflow of IntelliSep
- 2. Gain consensus on statements with experts across specialties involved in sepsis research and clinical care of sepsis patients

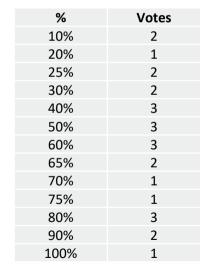
Study Approach

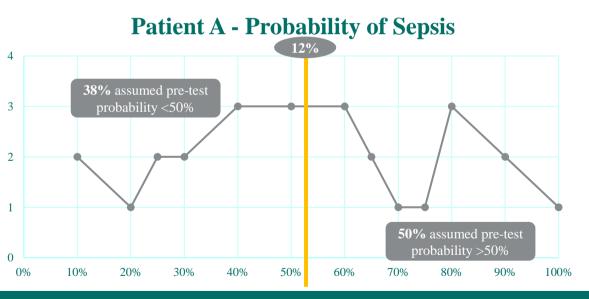
- Expert Participant Group:
 - 26 participants involved in sepsis research and clinical care; majority from academic centers
 - Representative of: Emergency Medicine, Critical Care, Laboratory Medicine, ID, Pharmacy
- Study Method:
 - Modified Delphi approach, consisting of 2 rounds of questionnaires (100% participation)
 - Both questionnaires split into two sections: (1) need statements for a rapid sepsis test (performance characteristics provided), (2) clinical action statements based on ISI bands associated with hypothetical patient cases
 - Participants asked to evaluate majority of statements using a five-point Likert scale
 - Level of agreement for each statement assessed post-questionnaire

Medical College of Wisconsin CONFIDENTIAL. Do not share.

How consistent is the perception of Sepsis Risk?

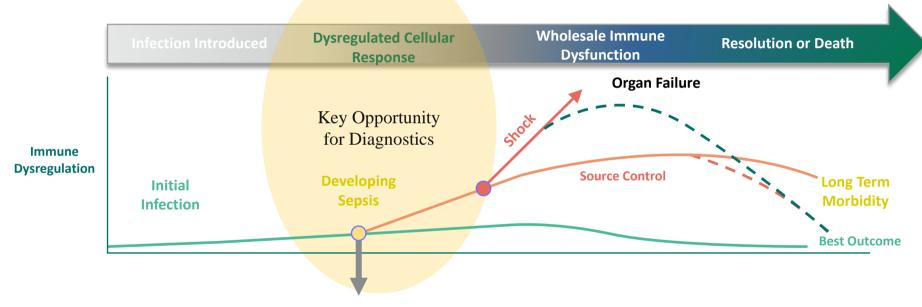
Patient Description:


- 72 year-old female nursing home patient
- Past medical history of dementia, hypertension and dyslipidemia
- Presented to the emergency department after nursing home staff noted her to have altered mentation
- Somnolent on the morning evaluation; on repeat evaluation several hours later, the patient remained in bed & very difficult to arouse
- At baseline, able to transfer from bed to bedside commode and wheelchair without difficulty, and is typically bright and communicative. This morning she was arousable only to physical stimulus and spoke incoherently. On arrival to the Emergency Department:
- Temperature: 97.8F, Pulse: 84, Respiratory rate: 16, Blood pressure 98 / 62 mmHg, Oxygen saturation 95% on room air.
- She opened her eyes and moaned incoherently to physical stimulus. An evaluation in the emergency department, including imaging studies, was significant for a:
- WBC of 9.8k, BUN 32, creatinine 1.9 (baseline 0.8), Lactate of 2.8 mmol/L
- Urinalysis (cath specimen) with + nitrites, 6-10 WBC / HPF, 0-5 RBC / HPF and many bacteria on microscopic exam



Little Agreement of Sepsis Risk amongst respondents

- Provided 2 example cases of potential diagnostic dilemmas and asked about pre-test probability of sepsis for these cases (1 presented here)
- Probability ranged from 10% to 100% for the same case, with little agreement


Providers don't currently "Know sepsis when they see it"

HOST RESPONSE CAN PROVIDE CRITICAL INFORMATION WHEN IT IS NEEDED MOST

Are we dealing with a medical emergency?

Limitations Of Current Tools

	EHR Alerts	Bodily Fluid Cultures	Biomarker s & SIRS	Pathogen ID
\checkmark	Clinical impression, vitals and initial testing are often the only information available for early triage	Provide confirmation of infection	Both symptoms and test results available early on in patient triage	Pinpoint the right pathogen type, help guide use of Abx
×	Dependent on data entry (and limited data) Alert fatigue	Require time	Offer an incomplete picture, non-specific and/or could be a lagging indicator of sepsis	Pathogen Detection is not Sepsis Detection
		Above do not ansv	wer both questions of	

is there a dysregulated host response to infection & is this a medical emergency?

A COUPLE OF HOST RESPONSE SOLUTIONS

Medical College of Wisconsin CONFIDENTIAL. Do not share.

PHYSICAL CELL DEFORMATION: AIMING TO PROVIDE A WINDOW INTO DYSREGULATED IMMUNITY AND PHENOTYPIC CELLULAR SHIFTS

- Interrogates biophysical properties of white blood cells (mainly neutrophils and monocytes) that may signal a Dysregulated Host Response
- 10,000 white blood cells are exposed to a controlled deformation process (squeezed) and imaged
- Squeezing cells reveals the nuclear architecture and level of Immune Activation
- The cell mechanics are analyzed and interpreted by the Cytovale system's machine learning algorithm

White Blood Cells from a

Images from Cytovale System

White Blood Cells from a **Septic Patient**

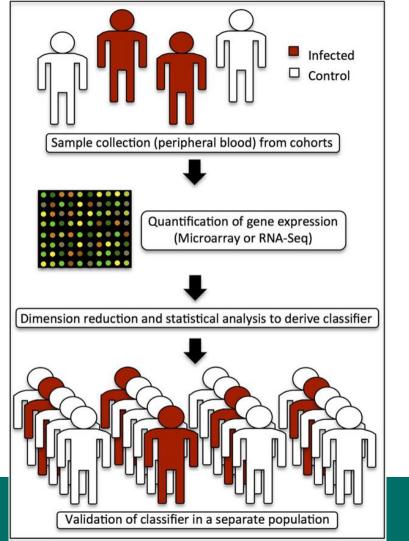
Results are provided on a continuum as an indication of host immune activation

`^^^^^

Medical College of Wisconsin CONFIDENTIAL. Do not share.

knowledge changing life

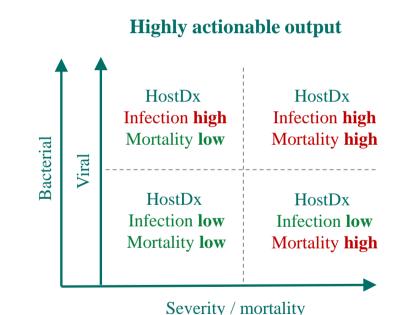
Provides a clear and timely indication to the ED provider when it is needed most:


- **Green Band** has very high negative predictive value (NPV) for sepsis, explore other diagnoses or conservative care
- Yellow Band slow down, additional workup may be appropriate for this patient
- **Red Band** likely warrants immediate and aggressive management

A BETTER APPROACH TO BIOMARKER DEVELOPMENT

Holcomb ZE et al. J Clin Microbiol. 2017

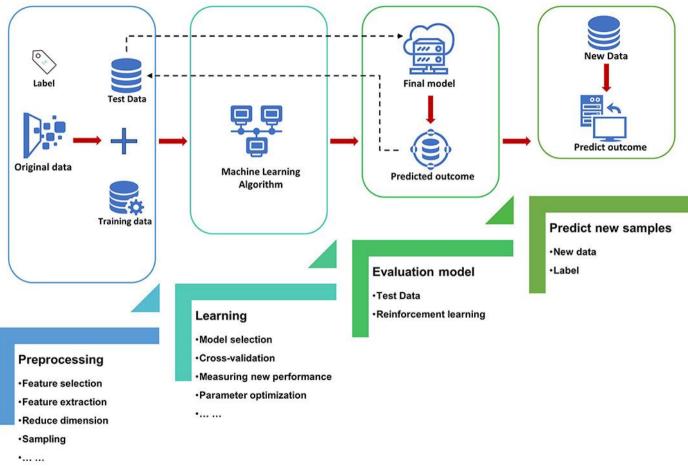
Medical College of Wisconsin CONFIDENTIAL. Do not share.


TRANSCRIPTOMICS APPROACH TO SEPSIS: PRESENCE, TYPE, AND SEVERITY

HostDx Sepsis puts out not <u>one</u> but <u>three</u> scores:

- 1. Bacterial infection,
- 2. Viral infection, and
- 3. Severity (30-day Mortality)

Each score is broken into 4 interpretation bands:


0			4
Very unlikely	Unlikely	Possible	Very likely
LR ~0.05	LR ~0.3	LR ~1.0	LR ~10
Sens 97-98%	Sens 94-96%	<noninformative></noninformative>	Spec 93-99%

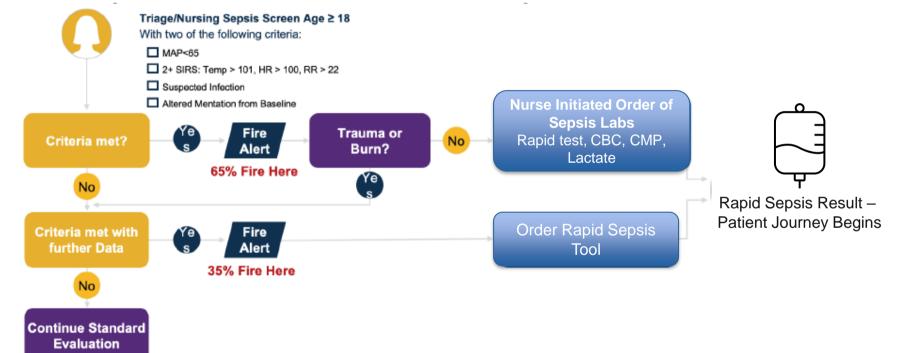
Medical College of Wisconsin CONFIDENTIAL. Do not share.

AI DRIVEN DECISION SUPPORT

PMID 34055839

HOW DOES HOST-RESPONSE HAVE AN IMPACT ON ANTIMICROBIAL STEWARDSHIP AND PATIENT OUTCOMES?

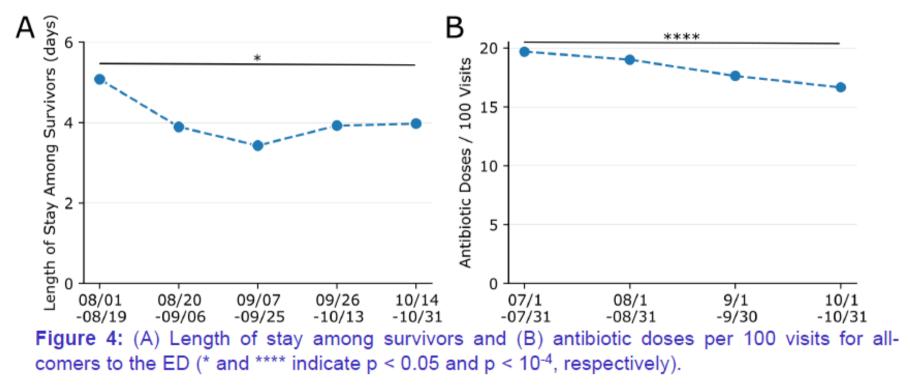
Medical College of Wisconsin CONFIDENTIAL. Do not share.


A TYPICAL NURSE-DRIVEN PROTOCOL FOR SEPSIS **EVALUATION** IN EPIC

Criteria for Initiating Nurse-Driven Sepsis Evaluation Process (Epic® Electronic Health Record) Adults Only (Age ≥ 18 years) Both of the following are answered 'YES' Is there a suspected infection? 1. Is altered mentation present? 2. OR Both of the Following One of the above is answered 'YES' And at least 2 of the Following 2 Respiratory Rate > 22a. Heart Rate > 100b. Temperature $> 101^{\circ} F (38.3^{\circ} C)$ c. OR

Hypotension (Systolic Blood Pressure < 90 mmHg or Mean Arterial Pressure < 60 mmHg)

NURSE-DRIVEN PROTOCOLS WITH RAPID SEPSIS DIAGNOSTIC


Medica

.

Thomas CB, et al. ISICEM 2024.

IMPACT OF HOST RESPONSE ON LOS AND ABX USE

Medical College of Wisconsin CONFIDENTIAL. Do not share.

knowledge changing life

Thomas CB, et al. ECCMID 2024 poster P1213

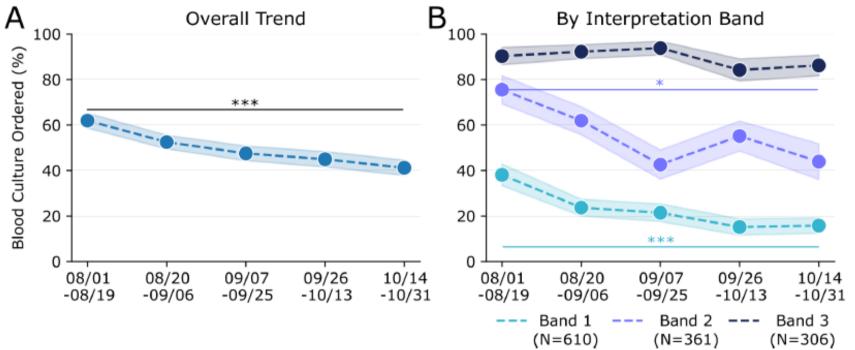

ARE WE ON A SIMILAR TRAJECTORY TO TROPONIN WITH MI?

TABLE 2 Total Number of MIs and UA in Relation to Method Used for Troponin Measurement in Sweden From 2007 to 2013						3	
	2007	2008	2009	2010	2011	2012	2013
MI							
Total MIs	33,380	31,731	29,712	29,621	28,641	28,123	25,787
Residents >20 yrs old	6,974,057	7,038,351	7,112,622	7,192,356	7,269,107	7,342,808	7,417,271
Incidence per 10,000 py	48	45	42	41	39	38	35
Length of stay, days	$\textbf{8.8} \pm \textbf{11.5}$	$\textbf{8.5} \pm \textbf{11.0}$	$\textbf{8.2} \pm \textbf{10.5}$	8.0 ± 10.3	$\textbf{7.7} \pm \textbf{10.2}$	$\textbf{7.4} \pm \textbf{9.2}$	$\textbf{7.3} \pm \textbf{9.1}$
MI diagnosed with cTn							
Total MIs	N/A	N/A	28,609 (96)	18,986 (64)	10,159 (35)	7,849 (28)	6,732 (26)
Length of stay, days	N/A	N/A	$\textbf{8.2} \pm \textbf{10.5}$	$\textbf{7.9} \pm \textbf{10.2}$	$\textbf{7.5}\pm\textbf{10.2}$	$\textbf{7.2} \pm \textbf{9.1}$	$\textbf{7.1} \pm \textbf{9.4}$
MI diagnosed with hs-cTnT							
Total MIs	N/A	N/A	439 (1.5)	6,842 (23)	15,120 (53)	18,881 (67)	18,519 (72)
Length of stay, days	N/A	N/A	$\textbf{8.0}\pm\textbf{8.2}$	$\textbf{7.8} \pm \textbf{9.8}$	$\textbf{7.5} \pm \textbf{10.1}$	$\textbf{7.5} \pm \textbf{9.3}$	$\textbf{7.4} \pm \textbf{9.1}$
MI diagnosed at hospitals with hs-cTnT, higher decision limit*							
Total MIs	N/A	N/A	664 (2.0)	3,793 (13)	3,362 (12)	1,393 (5.0)	536 (2.1)
Length of stay, days	N/A	N/A	10.2 ± 12.8	8.6 ± 11.4	$\textbf{9.2} \pm \textbf{10.3}$	$\textbf{8.5} \pm \textbf{8.7}$	$\textbf{8.5}\pm\textbf{8.0}$

PMID 29880121

IMPACT OF HOST RESPONSE AND LAB STEWARDSHIP

Figure 5: Rate of blood cultures ordered across time for (A) all patients with an ISI ordered and (B) across interpretation band. (* and *** indicate p < 0.05 and p < 0.001, respectively)

knowledge changing life

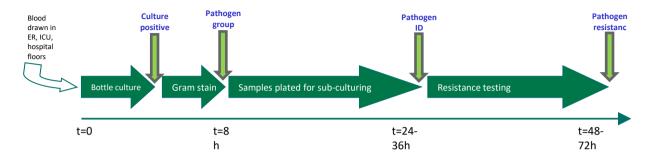
Thomas CB, et al. ECCMID 2024 poster P1213

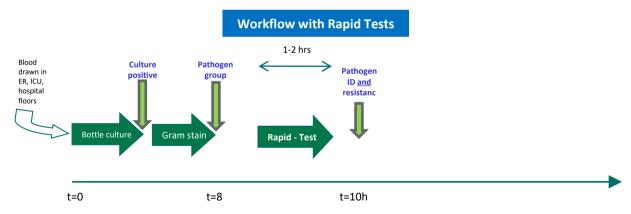
FINANCIAL IMPACT OF EARLY HOST RESPONSE IN SEPSIS

Disposition	Cost Reduction	LOS Reduction
Overall	\$1429	
Observation	\$243	
Inpatient	\$1930	1.28 Days
ICU	\$3624	2.42 Days

Medical College of Wisconsin CONFIDENTIAL. Do not share.

knowledge changing life

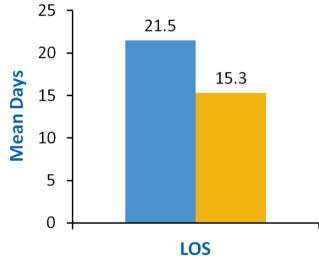

Thomas CB, et al. ISICEM 2024.


IS THE MICROBIOLOGY LAB EVER GOING TO BE ENGAGED IN THE FUTURE OF SEPSIS CARE?

Medical College of Wisconsin CONFIDENTIAL. Do not share.

Current Blood Culture Workflow

Medical College of Wisconsin CONFIDENTIAL. Do not share.



OUTCOMES: LENGTH OF STAY (LOS)

• Mean LOS was reduced

by 6.2 days in the post-rapid diagnostic group.

(21.5 versus 15.3, P = 0.07)

Pre Post

Medical College of Wisconsin CONFIDENTIAL. Do not share.

¹ Bauer KA, West JE, Balada-Llasat JM et al. *Clin Infect Dis.* 2010;51:1074-80.

CLINICAL AND TREATMENT-RELATED OUTCOMES

	Total			
Outcome	Pre-intervention (n = 256)	Intervention (n = 245)	<i>P</i> Value	
Clinical outcomes				
30-day all-cause mortality	52 (20.3)	31 (12.7)	0.021	
Time to microbiological clearance, d	3.3 ± 4.8	3.3 ± 5.7	0.928	
Length of hospitalization, d	14.2 ± 20.6	11.4 ± 12.9	0.066	
Length of ICU stay, d	14.9 ± 24.2	8.3 ± 9.0	0.014	
Recurrence of same BSI	15 (5.9)	5 (2.0)	0.038	
30-day readmission with same BSI	9 (3.5)	4 (1.6)	0.262	
Treatment-related outcomes				
Time to effective therapy, h	30.1 ± 67.7	20.4 ± 20.7	0.021	
Time to optimal therapy, h	90.3 ± 75.4	47.3 ± 121.5	<0.001	

ANTIMICROBIAL STEWARDSHIP IS CRITICAL

	Mean time to optimal ant	Difference, h		
Organism	Pre-PCR	Post-PCR	(95% CI)	P Value
S. aureus	23.8 (0.20-74.70)	25.0 (0.50-91.30)	+1.2 (-5.1, 9.8)	>0.1
MRSA	10.7 (0.22-24.72)	14.4 (0.67-36.88)	+3.7 (-1.8, 9.1)	>0.1
MSSA	32.8 (0.27-96.10)	35.1 (0.52-98.48)	+2.3 (-10.5, 15.2)	>0.1
MSSA isolates initially treated with vancomycin monotherapy				
All	55.3 (24.8-74.7)	62.3 (39.2-98.5)	+7.0 (-20.9, 24.9)	>0.1
No PCR performed		57.3 (55.4,59.3)	+2.0	>0.1
Antibiotics optimized after PCR, before C & S	,	48.4 (39.2–55.8)	-6.9 (-21.6, 7.7)	>0.1
Antibiotics optimized after PCR and C & S		73.7 (44.7–98.5)	+21.4 (3.0, 33.7)	0.02

Medical College of Wisconsin CONFIDENTIAL. Do not share.

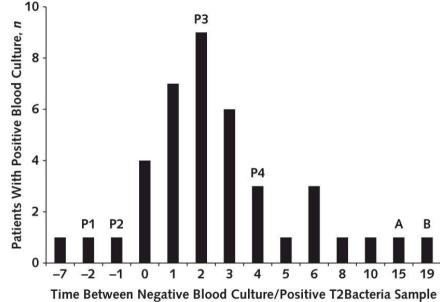
knowledge changing life

Frye AM, et al. JCM 2012; 50: 127-33

RANDOMIZED CONTROL STUDY

• Single Center

 Used antimicrobial 	Outcome	Control	Rapid Multiplex PCR	Rapid Multiplex PCR + Stewardship	P Value Comparing 3 Groups
stewardship interventior	Duration of therapy ^a , h				
I	Vancomycin				
 No differences in: 	All patients (n = 357)	44 (22-72)	42 (21-93)	42 (19-90)	.92
	Organisms not requiring vancomycin ^b (n = 169)	8.2 (0-26)	0 (0-16)	0 (0–3)°	.032
- Mortality	Vancomycin-susceptible enterococci (n = 32)	20 (1-59)	70 (48–88) ^c	82 (40-96)°	.037
	Methicillin-susceptible Staphylococcus aureus (n = 42)	23 (20-53)	11 (0-26)	8 (0-44)	.2
- Time to discharge	Nafcillin, oxacillin, or cefazolin (n = 50)	42 (24–57)	71 (51–79) ^c	85 (42-92)°	.035
	Piperacillin-tazobactam (n = 214)	56 (39-82)	44 (27–74) ^c	45 (19–78)°	.012
 ICU duration of stay 	Cefepime (n = 181)	55 (28-96)	71 (43–96)	58 (32-96)	.56
loo adiation of stay	Antibiotic modifications				
- Blood culture clearance	Time to first appropriate de-escalation ^d (n = 344)	34 (21–55)	38 (22-66)	21 (7–37) ^{c,e}	<.0001
	Time to first appropriate escalation ^f (n = 122)	24 (3-67)	6 (2-36)	5 (2-22)°	.04
	Time to administration of active antibiotics (n = 123) ⁹	11 (2–51)	6 (2-31)	4 (2-20)	.55
	Contaminated blood cultures not treated or treated for <24 h, No. $(\%)^{h}$	47 (75)	49 (89) ^c	57 (92) ^c	.015


Medical College of Wisconsin CONFIDENTIAL. Do not share.

knowledge changing life

Banerjee R, et al. Clin Infect Dis 2015; 61.

IMPORTANT TAKE HOME FOR DIRECT DETECTION ASSAYS

and Positive Clinical Blood Culture for Same T2Bacteria Organism, d

Nguyen MH et al. Ann Intern Med. 2019.

SUSCEPTIBILITY TESTING MATTERS!

- Among patients with any infectious & parasitic disease diagnosis
 - Those who had isolates tested for antimicrobial susceptibility had 30% lower probability of death
 - 26% lower mean length of stay (-1.8 days)
 - 36% lower cost than those who did not, \$7,524 lower cost per discharge

Advamed

HOW DOES THE MIC PLAY A ROLE?

- Most laboratories and automated AST systems only perform break point testing
 - Only test dilutions near breakpoint, which does not give a true representation of the MIC and possible treatment regimens
 - MIC data are most useful when considering antibiotic pharmacodynamics because drug exposure is always referenced to the MIC when deciding how much and over what dosing interval to administer an antibiotic.
- The use of broth microdilution or Etest is preferred to collect data on MIC distributions locally (by hospital or by unit) and can also be used for individual patients with MDR infections to help optimize antibiotic therapy, as both of these methodologies will provide for a larger MIC range to be tested.
 - The local MIC distribution can be used to support interventions like increased dosing or prolonged infusion

SUMMARY - WHY IS HOST RESPONSE SO IMPACTFUL?

- Patients at high risk of sepsis are immediately started on appropriate anti-infectives and appropriate resuscitation is initiated
- Patients at moderate risk can use clinical exam plus other lab data to further evaluate risk of sepsis
- Patients at low risk of sepsis
 - Evaluate for other causes of shock (ie cardiogenic, hypovolemic, or obstructive)
 - May be able to defer microbiology testing
- Could be a key screen to improve utility of direct pathogen detection tests
 No longer concerned about cost of new pathogen detection or AST approach due to low positivity

